## NCERT Solutions For Class 6 Maths Chapter 10 Mensuration Ex 10.1

## Exercise 10.1

Ex 10.1 Class 6 Maths Question 1.
Find the perimeter of each of the following figures:


Solution:
(a) Required perimeter
$=4 \mathrm{~cm}+2 \mathrm{~cm}+1 \mathrm{~cm}+5 \mathrm{~cm}=12 \mathrm{~cm}$
(b) Required perimeter
$=40 \mathrm{~cm}+35 \mathrm{~cm}+23 \mathrm{~cm}+35 \mathrm{~cm}$
$=133 \mathrm{~cm}$ or 1.33 m
(c) Required perimeter
$=15 \mathrm{~cm}+15 \mathrm{~cm}+15 \mathrm{~cm}+15 \mathrm{~cm}=15 \mathrm{~cm} \mathrm{x} 4=60 \mathrm{~cm}$
(d) Required perimeter
$=4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}-4 \mathrm{~cm} \mathrm{x} \mathrm{5}=20 \mathrm{~cm}$
(e) Required perimeter
$=4 \mathrm{~cm}+0.5 \mathrm{~cm}+2.5 \mathrm{~cm}+2.5 \mathrm{~cm}+0.5 \mathrm{~cm}+4 \mathrm{~cm}+1 \mathrm{~cm}$
$=15 \mathrm{~cm}$
(f) Required perimeter $=4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}$
$+4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}$
$=52 \mathrm{~cm}$
Ex 10.1 Class 6 Maths Question 2.
The lid of a rectangular box of sides 40 cm by 10 cm is sealed all round with tape. What is the length of the tape required?
Solution:
Total length of the tape required $=$ perimeter of the rectangular lid
$=2[$ length + breadth $]=2 \times[40+10]$
$=2 \times 50=100 \mathrm{~cm}$
Ex 10.1 Class 6 Maths Question 3.
A table-top measures 2 m 25 cm by 1 m 50 cm . What is the perimeter of the table-top?
Solution:
Length of table-top $=2 \mathrm{~m} 25 \mathrm{~cm}$
Breadth of table-top $=1 \mathrm{~m} 50 \mathrm{~cm}$
$\therefore$ Perimeter of the table top $=2$ [length + breadth $]$
$=2[2 \mathrm{~m} 25 \mathrm{~cm}+1 \mathrm{~m} 50 \mathrm{~cm}]$

| 2 m | 25 cm |
| ---: | ---: |
| +1 m | 50 cm |$|$| 2 m |
| ---: |
| 3 m |
| 75 cm |
| $\times 2$ |

$=2 \times 3 \mathrm{~m} 75 \mathrm{~cm}$
$=7 \mathrm{~m} \mathrm{50} \mathrm{cm}$
$=7.5 \mathrm{~m}$
Ex 10.1 Class 6 Maths Question 4.
What is the length of the wooden strip required to frame a photograph of length and breadth 32 cm and 21 cm respectively?
Solution:

Length of the strip $=32 \mathrm{~cm}$
Breadth of the strip $=21 \mathrm{~cm}$
$\therefore$ Perimeter $=2$ [length + breadth $]$
$=2[32 \mathrm{~cm}+21 \mathrm{~cm}]$
$=2 \times 53 \mathrm{~cm}=106 \mathrm{~cm}$
Hence, the required length of the strip $=106 \mathrm{~cm}$ or 1 m 6 cm .
Ex 10.1 Class 6 Maths Question 5.
A rectangular piece of land measures 0.7 km by 0.5 km . Each side is to be fenced with 4 rows of wires. What is the length of the wire needed?
Solution:
Length of the rectangular piece of land $=0.7 \mathrm{~km}=0.7 \times 1000 \mathrm{~m}=700 \mathrm{~m}$
Breadth of the rectangular piece of land $=0.5 \mathrm{~km}=0.5 \times 1000 \mathrm{~m}=500 \mathrm{~m}$
$\therefore$ Perimeter of the rectangular land
$=2$ [length + breadth $]$
$=2[700 \mathrm{~m}+500 \mathrm{~m}]$
$=2400 \mathrm{~m}$.
Length of wire needed in 4 rounds of the land $=4 \times 2400=9600 \mathrm{~m}=9.6 \mathrm{~km}$.
Ex 10.1 Class 6 Maths Question 6.
Find the perimeter of each of the following shapes:
(a) A triangle of sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm .
(b) An equilateral triangle of side 9 cm .
(c) An isosceles triangle with equal sides 8 cm each and third side 6 cm .

Solution:
(a) We know that the perimeter of the given triangle $=$ The sum of all sides of the triangle
$\therefore$ Perimeter of the triangle $=3 \mathrm{~cm}+4 \mathrm{~cm}+5 \mathrm{~cm}=12 \mathrm{~cm}$
(b) We know that the perimeter of the given triangle
= Sum of all the sides of the triangle
$=(9+9+9)=27 \mathrm{~cm}$
(c) Perimeter of the given isosceles triangle
$=$ Sum of all the sides of the triangle
$=(8+8+6) \mathrm{cm}=22 \mathrm{~cm}$
Ex 10.1 Class 6 Maths Question 7.
Find the perimeter of a triangle with sides measuring $10 \mathrm{~cm}, 14 \mathrm{~cm}$ and 15 cm .
Solution:
Perimeter of a triangle $=$ Sum of all the sides of the triangle
$=10 \mathrm{~cm}+14 \mathrm{~cm}+15 \mathrm{~cm}$
$=39 \mathrm{~cm}$
Ex 10.1 Class 6 Maths Question 8.
Find the perimeter of a regular hexagon with each side measuring 8 m .
Solution:
Perimeter of a regular hexagon $=6 \times$ side $=6 \times 8 \mathrm{~m}=48 \mathrm{~m}$.
Ex 10.1 Class 6 Maths Question 9.
Find the side of the square whose perimeter is 20 m .
Solution:
Perimeter of a square $=4 \mathrm{x}$ side
$20=4 \mathrm{x}$ side
$\therefore$ side $=20 \mathrm{~m} \div 4=5 \mathrm{~m}$
Ex 10.1 Class 6 Maths Question 10.
The perimeter of a regular pentagon is 100 cm . How long is its each side?
Solution:
We have
Perimeter of the regular pentagon $=100 \mathrm{~cm}$
Number of sides in regular pentagon $=5$
$\therefore$ Length of each side $=$ Perimeter $\div$ Number of sides
$=100 \mathrm{~cm} \div 5=20 \mathrm{~cm}$.
Ex 10.1 Class 6 Maths Question 11.
A piece of string is 30 cm long. What will be the length of each side if the string is used to form:
(a) a square?
(b) an equilateral triangle?
(c) a regular hexagon?

Solution:
(a) Length of string $=30 \mathrm{~cm}$

Number of equal sides in a square $=4$
$\therefore$ Length of each side of the square $=30 \mathrm{~cm} \div 4=7.50 \mathrm{~cm}$.
(b) Length of string $=30 \mathrm{~cm}$

Number of equal sides in equilateral triangle $=3$
$\therefore$ Length of each side of the equilateral triangle $=30 \mathrm{~cm} \div 3=10 \mathrm{~cm}$
(c) Length of string $=30 \mathrm{~cm}$

Number of equal sides in regular hexagon $=6$
$\therefore$ Length of each side of the regular hexagon $=30 \mathrm{~cm} \div 6=5 \mathrm{~cm}$
Ex 10.1 Class 6 Maths Question 12.
Two sides of a triangle are 12 cm and 14 cm . The perimeter of the triangle is 36 cm . What is its third side?
Solution:
Perimeter of the triangle $=36 \mathrm{~cm}$.
Length of two of its sides are 12 cm and 14 cm .
Length of the third side of the triangle $=36-(12+14) \mathrm{cm}$
$=(36-26) \mathrm{cm}=10 \mathrm{~cm}$
Ex 10.1 Class 6 Maths Question 13.
Find the cost of fencing a square park of side 250 m at the rate of? 20 per metre.
Solution:
Length of the side of a square $=250 \mathrm{~m}$
$\therefore$ Perimeter of the square $=250 \mathrm{~m} \mathrm{x} 4=1000 \mathrm{~m}$
Rate of fencing $=₹ 20$ per m .
$\therefore$ Cost of fencing $=₹ 20 \times 1000=₹ 20,000$
Ex 10.1 Class 6 Maths Question 14.
Find the cost of fencing a rectangular park of length 175 m and breadth 125 m at the rate of $₹ 12$ per metre.
Solution:
Length of the rectangular park $=175 \mathrm{~m}$
Breadth of the rectangular park $=125 \mathrm{~m}$
$\therefore$ Perimeter of the park $=2$ [length + breadth $]$
$=2[175 \mathrm{~m}+125 \mathrm{~m}]$
$=2 \times 300 \mathrm{~m}=600 \mathrm{~m}$
Rate of fencing $=₹ 12$ per metre Cost of fencing $=₹ 12 \times 600=₹ 7200$
Ex 10.1 Class 6 Maths Question 15.
Sweety runs around a square park of side 75 m . Bulbul runs around a rectangular park with length 60 m and breadth 45 m . Who covers less distance?
Solution:
Side of the square park $=75 \mathrm{~m}$
$\therefore$ its perimeter $=4 \times 75 \mathrm{~m}=300 \mathrm{~m}$
Perimeter of the rectangular park $=2$ [length + breadth $]$
$=2[60 \mathrm{~m}+45 \mathrm{~m}]$
$=2 \times 105 \mathrm{~m}=210 \mathrm{~m}$.
Since $210 \mathrm{~m}<300 \mathrm{~m}$.
So, Bulbul covers less distance.
Ex 10.1 Class 6 Maths Question 16.
What is the perimeter of each of the following figures? What do you infer from the answers?


Solution:
(a) Perimeter of the square $=25 \mathrm{~cm}+25 \mathrm{~cm}+25 \mathrm{~cm}+25 \mathrm{~cm}=4 \times 25 \mathrm{~cm}=100 \mathrm{~cm}$
(b) Perimeter of the rectangle $=30 \mathrm{~cm}+20 \mathrm{~cm}+30 \mathrm{~cm}+20 \mathrm{~cm}-2[30 \mathrm{~cm}+20 \mathrm{~cm}]=2 \times 50 \mathrm{~cm}=100 \mathrm{~cm}$
(c) Perimeter of the rectangle $=40 \mathrm{~cm}+10 \mathrm{~cm}+40 \mathrm{~cm}+10 \mathrm{~cm}=2[40 \mathrm{~cm}+10 \mathrm{~cm}]=2 \times 50 \mathrm{~cm}=100 \mathrm{~cm}$
(d) Perimeter of the triangle $=$ Sum of all sides $=30 \mathrm{~cm}+30 \mathrm{~cm}+40 \mathrm{~cm}=100 \mathrm{~cm}$ From the above answers, we conclude that different figures may have equal perimeters.

Ex 10.1 Class 6 Maths Question 17.
Avneet buys 9 square paving slabs, each with a side of $\frac{1}{7} \mathrm{~m}$. He lays them in the form of a square.
(a) What is the perimeter of his arrangement [Fig. (i)]?
(b) Shari does not like his arrangement. She gets him to lay them out like a cross. What is the perimeter of her arrangement [Fig. (ii)]?
(c) Which has greater perimeter?
(d) Avneet wonders, if there is a way of getting an even greater perimeter. Can you find a way of doing this? (The paving slabs must meet along complete edges, i.e., they can not be broken).


Solution:
(a) The arrangement is in the form of a square of side $\left(\frac{1}{2} m+\frac{1}{2} m+\frac{1}{2} m\right)=1 \frac{1}{2} m$.
$\therefore$ Perimeter of the square arrangement

$$
\begin{aligned}
& =4 \times \text { side } \\
& =4 \times 1 \frac{1}{2} \mathrm{~m} \\
& =4 \times \frac{3}{2} \mathrm{~m}=6 \mathrm{~m} .
\end{aligned}
$$

(b) Perimeter of cross-arrangement
$=\frac{1}{2} m+1 m+1 m+\frac{1}{2} m+1 m+1 m+\frac{1}{2} m$
$+1 \mathrm{~m}+1 \mathrm{~m}+\frac{1}{2} \mathrm{~m}+1 \mathrm{~m}+1 \mathrm{~m}=10 \mathrm{~m}$
(c) Since $10 \mathrm{~m}>6 \mathrm{~m}$
$\therefore$ Cross-arrangement has greater perimeter.
(d) Total number of tiles $=9$
$\therefore$ We have the following arrangement


The above arrangement will also have the greater perimeter.
Question 1:
Find the perimeter of each of the following figures:
(a)

## Answer:

Perimeter of a polygon is equal to the sum of the lengths of all sides of that polygon.
(a) Perimeter $=(4+2+1+5) \mathrm{cm}=12 \mathrm{~cm}$
(b) Perimeter $=(23+35+40+35) \mathrm{cm}=133 \mathrm{~cm}$
(c) Perimeter $=(15+15+15+15) \mathrm{cm}=60 \mathrm{~cm}$
(d) Perimeter $=(4+4+4+4+4) \mathrm{cm}=20 \mathrm{~cm}$
(e) Perimeter $=(1+4+0.5+2.5+2.5+0.5+4) \mathrm{cm}=15 \mathrm{~cm}$
(f) Perimeter $=(1+3+2+3+4+1+3+2+3+4+1+3+2+3+4+$
$1+3+2+3+4)=52 \mathrm{~cm}$

## Question 2:

The lid of a rectangular box of sides 40 cm by 10 cm is sealed all round with tape. What is the length of the tape required?
Answer:
Length ( $l$ ) of rectangular box $=40 \mathrm{~cm}$
Breadth (b) of rectangular box $=10 \mathrm{~cm}$
Length of tape required $=$ Perimeter of rectangular box
$=2(1+b)=2(40+10)=100 \mathrm{~cm}$

## Question 3:

A table-top measures 2 m 25 cm by 1 m 50 cm . What is the perimeter of the table-top? Answer:
Length ( $l$ ) of table-top $=2 \mathrm{~m} 25 \mathrm{~cm}=2+0.25=2.25 \mathrm{~m}$
Breadth (b) of table-top $=1 \mathrm{~m} 50 \mathrm{~cm}=1+0.50=1.50 \mathrm{~m}$
Perimeter of table-top $=2(1+b)$
$=2 \times(2.25+1.50)$
$=2 \times 3.75=7.5 \mathrm{~m}$

## Question 4:

What is the length of the wooden strip required to frame a photograph of length and breadth 32 cm and 21 cm respectively?
Answer:
Length $(I)$ of photograph $=32 \mathrm{~cm}$
Breadth (b) of photograph $=21 \mathrm{~cm}$
Length of wooden strip required $=$ Perimeter of Photograph
$=2 \times(1+b)$
$=2 \times(32+21)=2 \times 53=106 \mathrm{~cm}$

## Question 5:

A rectangular piece of land measures 0.7 km by 0.5 km . Each side is to be fenced with 4 rows of wires. What is the length of the wire needed?
Answer:
Length $(l)$ of land $=0.7 \mathrm{~km}$
Breadth (b) of land $=0.5 \mathrm{~km}$
Perimeter $=2 \times(1+b)$
$=2 \times(0.7+0.5)=2 \times 1.2=2.4 \mathrm{~km}$
Length of wire required $=4 \times 2.4=9.6 \mathrm{~km}$

## Question 6:

Find the perimeter of each of the following shapes:
(a) A triangle of sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm .
(b) An equilateral triangle of side 9 cm .
(c) An isosceles triangle with equal sides 8 cm each and third side 6 cm .

Answer:
(a) Perimeter $=(3+4+5) \mathrm{cm}=12 \mathrm{~cm}$
(b) Perimeter of an equilateral triangle $=3 \times$ Side of triangle
$=(3 \times 9) \mathrm{cm}=27 \mathrm{~cm}$
(c) Perimeter $=(2 \times 8)+6=22 \mathrm{~cm}$

## Question 7:

Find the perimeter of a triangle with sides measuring $10 \mathrm{~cm}, 14 \mathrm{~cm}$ and 15 cm .
Answer:
Perimeter of triangle $=$ Sum of the lengths of all sides of the triangle
Perimeter $=10+14+15=39 \mathrm{~cm}$

## Question 8:

Find the perimeter of a regular hexagon with each side measuring 8 m .
Answer:
Perimeter of regular hexagon $=6 \times$ Side of regular hexagon
Perimeter of regular hexagon $=6 \times 8=48 \mathrm{~m}$

## Question 9:

Find the side of the square whose perimeter is 20 m .
Answer:
Perimeter of square $=4 \times$ Side
$20=4 \times$ Side
Side $=\frac{20}{4}=5 \mathrm{~m}$
Question 10:
The perimeter of a regular pentagon is 100 cm . How long is its each side?
Answer:
Perimeter of regular pentagon $=5 \times$ Length of side
$100=5 \times$ side
Side $=\frac{\frac{100}{5}}{}=20 \mathrm{~cm}$
Question 11:
A piece of string is 30 cm long. What will be the length of each side if the string is used to form:
(a) a square?
(b) an equilateral triangle?
(c) a regular hexagon?

## Question 11:

A piece of string is 30 cm long. What will be the length of each side if the string is used to form:
(a) a square?
(b) an equilateral triangle?
(c) a regular hexagon?

Answer:
(a) Perimeter $=4 \times$ Side
$30=4 \times$ Side
Side $=\frac{30}{4}=7.5 \mathrm{~cm}$
(b) Perimeter $=3 \times$ Side
$30=3 \times$ Side
Side $=\frac{30}{3}=10 \mathrm{~cm}$
(c) Perimeter $=6 \times$ Side
$30=6 \times$ Side
Side $=\frac{30}{6}=5 \mathrm{~cm}$

## Question 12:

Two sides of a triangle are 12 cm and 14 cm . The perimeter of the triangle is 36 cm .
What is its third side?
Answer:
Perimeter of triangle $=$ Sum of all sides of the triangle
$36=12+14+$ Side
$36=26+$ Side
Side $=36-26=10 \mathrm{~cm}$
Hence, the third side of the triangle is 10 cm .

## Question 13:

Find the cost of fencing a square park of side 250 m at the rate of Rs 20 per metre.
Answer:
Length of fence required $=$ Perimeter of the square park
$=4 \times$ Side
$=4 \times 250=1000 \mathrm{~m}$
Cost for fencing 1 m of square park $=$ Rs 20
Cost for fencing 1000 m of square park $=1000 \times 20$
= Rs 20000

## Question 14:

Find the cost of fencing a rectangular park of length 175 m and breadth 125 m at the rate of Rs 12 per metre.
Answer:
Length ( $l$ ) of rectangular park $=175 \mathrm{~m}$
Breadth (b) of rectangular park $=125 \mathrm{~m}$
Length of wire required for fencing the park $=$ Perimeter of the park
$=2 \times(I+b)$
$=2 \times(175+125)$
$=2 \times 300$
$=600 \mathrm{~m}$
Cost for fencing 1 m of the park $=$ Rs 12
Cost for fencing 600 m of the square park $=600 \times 12$
= Rs 7200

## Question 15:

Sweety runs around a square park of side 75 m . Bulbul runs around a rectangular park with length 60 m and breadth 45 m . Who covers less
distance?
Answer:
Distance covered by Sweety $=4 \times$ Side of square park
$=4 \times 75=300 \mathrm{~m}$
Distance covered by Bulbul $=2 \times(60+45)$
$=2 \times 105=210 \mathrm{~m}$

Therefore, Bulbul covers less distance.

## Question 16:

What is the perimeter of each of the following figures? What do you infer from the answers?

(a)

(d)

Answer:
(a) Perimeter of square $=4 \times 25=100 \mathrm{~cm}$
(b) Perimeter of rectangle $=2 \times(10+40)=100 \mathrm{~cm}$
(c) Perimeter of rectangle $=2 \times(20+30)=100 \mathrm{~cm}$
(d) Perimeter of triangle $=30+30+40=100 \mathrm{~cm}$

It can be inferred that all the figures have the same perimeter.

## Question 17:

Avneet buys 9 square paving slabs, each with a side of $\frac{1}{2} \mathrm{~m}$. He lays them in the form of a square.

(a) What is the perimeter of his arrangement [figure (i)]?
(b) Shari does not like his arrangement. She gets him to lay them out like a cross. What is the perimeter of her arrangement [figure (ii)]?
(c) Which has greater perimeter?
(d) Avneet wonders if there is a way of getting an even greater perimeter. Can you find a way of doing this? (The paving slabs must meet along complete edges i.e. they cannot be broken.)
Answer:
(a) Side of square $=\left(3 \times \frac{1}{2}\right) \mathrm{m}=\frac{3}{2} \mathrm{~m}$

$$
4 \times \frac{3}{2}=6 \mathrm{~m}
$$

(b) Perimeter of cross $=0.5+1+1+0.5+1+1+0.5+1+1$
$+0.5+1+1=10 \mathrm{~m}$

(c) The arrangement in the form of a cross has a greater perimeter.
(d) Arrangements with perimeters greater than 10 m cannot be determined.

## NCERT Solutions For Class 6 Maths Chapter 10 Mensuration Ex 10.2

## Exercise 10.2

Ex 10.2 Class 6 Maths Question 1.
Find the areas of the following figures by counting square:




Solution:
(a) Number of full squares $=9$

Area of 1 square $=1$ sq unit
$\therefore$ Area of 9 squares $=9 \times 1$ sq unit
$=9$ sq units.
So, the area of the portion covered by 9 squares $=9$ sq units
(b) Number of full squares $=5$
$\therefore$ Area of the figure $=5 \times 1$ sq unit $=5$ sq units
(c) Number of full squares $=2$

Number of half squares $=4$
$\therefore$ Area of the covered figure $=2 \times 1+4 \times \frac{1}{2}=2+2$
$=4$ sq units
(d) Number of full squares $=8$
$\therefore$ Area of the covered portion of the figure $=8 \times 1$ sq unit
$=8$ squnits.
(e) Number of full squares $=10$

Area covered by the figure $=10 \times 1 \mathrm{sq}$ unit $=10$ sq units.
(f) Number of full squares $=2$

Number of half squares $=4$
$\therefore$ Area of the covered figure $=\left(2 \times 1+4 \times \frac{1}{2}\right)$
$=(2+2)$ sq units $=4$ sq units.
(g) Number of full squares $=4$

Number of half squares $=4$
$\therefore$ Area of the covered figure $=\left(4 \times 1+4 \times \frac{1}{2}\right)$
$=(4+2)$ sq units $=6$ sq units.
(h) Number of full squares $=5$
$\therefore$ Area of the covered figure $=5 \times 1$ sq unit $=5$ sq units.
(i) Number of full squares $=9$
$\therefore$ Area of the covered figure $=9 \times 1$ sq units
$=9$ sq units.
(j) Number of full squares $=2$

Number of half squares $=4$
$\therefore$ Area of the covered figure $=\left(2 \times 1+4 \times \frac{1}{2}\right)$ sq units
$=(2+2)$ sq units $=4$ sq units.
(k) Number of full squares $=4$

Number of half squares $=2$
$\therefore$ Area of the covered figure $=\left(4 \times 1+2 \times \frac{1}{2}\right)$ sq units
$=(4+4)$ sq units
$=5 \mathrm{sq}$ units
(l) Number of full squares $=4$

Number of squares more than half $=3$
Number of half squares $=2$
$\therefore$ Area of the covered figure $=\left(4 \times 1+3 \times 1+2 \times \frac{1}{2}\right.$ sq units
$=(4+3+1)$ sq units $=8$ sq units.
(m) Number of full squares $=6$

Number of more than half squares $=8$

Area of the covered figure $=(6 \times 1+8 \times 1)$ sq units
$=(6+8)$ sq units
$=14 \mathrm{sq}$ units.
(n) Number of full squares $=9$

Number of more than half squares $=9$
$\therefore$ Area of the covered figure
$=(9 \times 1+9 \times 1)$ sq units
$=(9+9)$ sq units $=18$ sq units.
Find the areas of the following figures by counting square:

(a)

(b)

(c)

(d)

(g)

(e)

(j)
(h)

(k)

( $n$ )

Answer:
(a) The figure contains 9 fully filled squares only. Therefore, the area of
this figure will be 9 square units.
(b) The figure contains 5 fully filled squares only. Therefore, the area of this figure will be 5 square units.
(c) The figure contains 2 fully filled squares and 4 half-filled squares. Therefore, the area of this figure will be 4 square units.
(d) The figure contains 8 fully filled squares only. Therefore, the area of this figure will be 8 square units.
(e) The figure contains 10 fully filled squares only. Therefore, the area of this figure will be 10 square units.
(f) The figure contains 2 fully filled squares and 4 half-filled squares. Therefore, the area of this figure will be 4 square units.
(g) The figure contains 4 fully filled squares and 4 half-filled squares. Therefore, the area of this figure will be 6 square units.
(h) The figure contains 5 fully filled squares only. Therefore, the area of this figure will be 5 square units.
(i) The figure contains 9 fully filled squares only. Therefore, the area of this figure will be 9 square units.
(j) The figure contains 2 fully filled squares and 4 half-filled squares. Therefore, the area of this figure will be 4 square units.
(k) The figure contains 4 fully filled squares and 2 half-filled squares. Therefore, the area of this figure will be 5 square units.
(I) From the given figure, it can be observed that,

| Covered Area | Number | Area estimate (sq units) |
| :--- | :--- | :--- |
| Fully filled squares | 2 | 2 |
| Half filled squares | - | - |
| More than half - filled squares | 6 | 6 |
| Less than half - filled squares | 6 | 0 |

Total area $=2+6=8$ square units
( m ) From the given figure, it can be observed that,

| Covered Area | Number | Area estimate (sq units) |
| :--- | :--- | :--- |
| Fully filled squares | 5 | 5 |
| Half-filled squares | - | - |
| More than half-filled squares | 9 | 9 |
| Less than half-filled squares | 12 | 0 |

Total area $=5+9=14$ square units
( $n$ ) From the given figure, it can be observed that,

| Covered Area | Number | Area estimate (sq units) |
| :--- | :--- | :--- |
| Fully filled squares | 8 | 8 |
| Half-filled squares | - | - |
| More than half-filled squares | 10 | 10 |
| Less than half-filled squares | 9 | 0 |

Total area $=8+10=18$ square units

## NCERT Solutions For Class 6 Maths Chapter 10 Mensuration Ex 10.3

## Exercise 10.3

Ex 10.3 Class 6 Maths Question 1.
Find the areas of the rectangles whose sides are:
(a) 3 cm and 4 cm
(b) 12 m and 21 m
(c) 2 km and 3 km
(d) 2 m and 70 cm

Solution:
(a) Length of the rectangle $=3 \mathrm{~cm}$

Breadth of the rectangle $=4 \mathrm{~cm}$
$\therefore$ Area of the rectangle $=$ length x breadth $=3 \mathrm{~cm} \mathrm{x} 4 \mathrm{~cm}$
$=12 \mathrm{~cm}^{2}$ or 12 sq cm
(b) Length of the rectangle $=12 \mathrm{~m}$ and breadth $=21 \mathrm{~m}$
$\therefore$ Area of the rectangle $=$ length x breadth $=12 \mathrm{mx} 21 \mathrm{~m}$
$=252 \mathrm{~m}^{2}$ or 252 sq m
(c) Length of the rectangle $=2 \mathrm{~km}$ and breadth 3 km
$\therefore$ Area of the rectangle $=$ length x breadth $=2 \mathrm{~km} \times 3 \mathrm{~km}$
$=6 \mathrm{~km}^{2}$ or 6 sq km
(d) Length of the rectangle $=2 \mathrm{~m}$
and breadth $=70 \mathrm{~cm}$ or 0.70 m
$\therefore$ Area of the rectangle $=$ length x breadth $=2 \mathrm{mx} 0.70 \mathrm{~m}$
$=1.40 \mathrm{~m}^{2}$ or 1.40 sq m
Ex 10.3 Class 6 Maths Question 2.
Find the areas of the squares whose sides are:
(a) 10 cm
(b) 14 cm
(c) 5 m

Solution:
(a) Side of the square $=10 \mathrm{~cm}$
$\therefore$ Area of the square $=$ Side $x$ Side $=10 \mathrm{~cm} \times 10 \mathrm{~cm}=100 \mathrm{~cm}^{2}$ or 100 sq cm
(b) Side of the square $=14 \mathrm{~cm}$
$\therefore$ Area of the square $=$ Side x Side $=14 \mathrm{~cm} \times 14 \mathrm{~cm}=196 \mathrm{~cm}^{2}$ or 196 sq cm
(c) Side of the square $=5 \mathrm{~m}$
$\therefore$ Area of the square $=$ Side x Side $=5 \mathrm{~m} \times 5 \mathrm{~m}=25 \mathrm{~m}^{2}$ or 25 sq m
Ex 10.3 Class 6 Maths Question 3.
The length and breadth of three rectangles are as given below:
(a) 9 m and 6 m
(b) 17 m and 3 m
(c) 4 m and 14 m

Which one has the largest area and which one has the smallest?
Solution:
(a) Length of the rectangle $=9 \mathrm{~m}$
and breadth $=6 \mathrm{~m}$
$\therefore$ Area of the rectangle $=$ length x breadth
$=9 \mathrm{mx} 6 \mathrm{~m}$
$=54 \mathrm{~m}^{2}$ or 54 sq m
(b) Length of the rectangle $=17 \mathrm{~m}$ and breadth $=3 \mathrm{~m}$
$\therefore$ Area of the rectangle
$=$ length x breadth $=17 \mathrm{~m} \times 3 \mathrm{~m} 51 \mathrm{~m}^{2}$ or 51 sq m
(c) Length of the rectangle $=4 \mathrm{~m}$
and breadth $=14 \mathrm{~m}$
Area of the rectangle $=$ length $x$ breadth
$=4 \mathrm{mx} 14 \mathrm{~m}$
$=56 \mathrm{~m}^{2}$ or 56 sq m
Rectangle (c) has the largest area, i.e., 56 sq m and Rectangle (b) has the smallest area, i.e., 51 sq m .
Ex 10.3 Class 6 Maths Question 4.
The area of a rectangular garden 50 m long is 300 sq m . Find the width of the garden.
Solution:
Length of the rectangular garden $=50 \mathrm{~m}$
Area of the rectangular garden $=300 \mathrm{sq} \mathrm{m}$
$\therefore$ Width $=$ Area $\div$ Length
$=300 \mathrm{sq} \mathrm{m} \div 50 \mathrm{~m}=6 \mathrm{~m}$
Hence width of the garden $=6 \mathrm{~m}$.
Ex 10.3 Class 6 Maths Question 5.
What is the cost of tiling a rectangular plot of land 500 m long and 200 m wide at the rate of ₹ 8 per hundred sq m ?
Solution:
Length of the rectangular plot $=500 \mathrm{~m}$
and the breadth $=200 \mathrm{~m}$
$\therefore$ Area of the plot $=$ length x breadth $=500 \mathrm{~m} \times 200 \mathrm{~m}=100000 \mathrm{sq} \mathrm{m}$
Now rate of tiling the plot $=₹ 8$ per 100 sq m
Cost of tiling the garden $=₹\left(\frac{8}{100} \times 100000\right)=₹ 8000$
Hence the required cost $=₹ 8000$
Ex 10.3 Class 6 Maths Question 6.
A table-top measures 2 m by 1 m 50 cm . What is its area in square metres?
Solution:
Length of the table-top $=2 \mathrm{~m}$
and its breadth $=1 \mathrm{~m} 50 \mathrm{~cm}$ or 1.50 m
$\therefore$ Area of the table-top $=$ length x breadth
$=2 \mathrm{mx} 1.50 \mathrm{~m}$
$=3 \mathrm{~m}^{2}$ or 3 sq m
Hence, the area of table-top $=3 \mathrm{sq} \mathrm{m}$.
Ex 10.3 Class 6 Maths Question 7.
A room is 4 m long and 3 m 50 cm wide. How many square metres of carpet is needed to cover the floor of the room?
Solution:
Length of the room $=4 \mathrm{~m}$
and its breadth $=3 \mathrm{~m} 50 \mathrm{~cm}=3.5 \mathrm{~m}$
Area of the room $=$ length $x$ breadth
$=4 \mathrm{mx} 3.5 \mathrm{~m}=14 \mathrm{sq} \mathrm{m}$
Hence, the area of the carpet needed $=14 \mathrm{sq} \mathrm{m}$
Ex 10.3 Class 6 Maths Question 8.
A floor is 5 m long and 4 m wide. A square carpet of sides 3 m is laid on the floor. Find the area of the floor that is not carpeted.
Solution:
Length of the floor $=5 \mathrm{~m}$
and its breadth $=4 \mathrm{~m}$
$\therefore$ Area of the floor $=$ length x breadth
$=5 \mathrm{mx} 4 \mathrm{~m}=20 \mathrm{sqm}$
Side of the carpet $=3 \mathrm{~m}$
$\therefore$ Area of the square carpet $=$ side $\times$ side $=3 \mathrm{~m} \times 3 \mathrm{~m}=9 \mathrm{sqm}$
$\therefore$ Area of the floor which is not carpeted $=20 \mathrm{sq} \mathrm{m}-9 \mathrm{sq} \mathrm{m}$
$=11 \mathrm{sq} \mathrm{m}$.
Ex 10.3 Class 6 Maths Question 9.
Five square flower beds each of side 1 m are dug on a piece of land 5 m long and 4 m wide. What is the area of the remaining part of the land?

## Solution:

Side of the square flower bed $=1 \mathrm{~m}$.
$\therefore$ Area of 1 square flower bed $=1 \mathrm{~m} \times 1 \mathrm{~m}=1$ sqm.
$\therefore$ Area of 5 square flower beds $=1 \mathrm{sq} \mathrm{m} \mathrm{x} 5=5 \mathrm{sq} \mathrm{m}$.
Now length of the land $=5 \mathrm{~m}$
and its breadth $=4 \mathrm{~m}$
$\therefore$ Area of the land $=$ length x breadth $=5 \mathrm{~m} \times 4 \mathrm{~m}=20 \mathrm{sq} \mathrm{m}$
$\therefore$ Area of the remaining part of the land $=20 \mathrm{sq} \mathrm{m}-5 \mathrm{sq} \mathrm{m}$
$=15 \mathrm{sq} \mathrm{m}$.
Ex 10.3 Class 6 Maths Question 10.
By splitting the following figures into rectangles, find their areas (The measures are given in centimetres).
(a)

(b)


Solution:
(a)


Splitting the given figure into the rectangles I, II, III and IV, we have

Area of the rectangle $\mathrm{I}=$ length x breadth
$=4 \mathrm{~cm} \times 3 \mathrm{~cm}=12 \mathrm{sq} \mathrm{cm}$
Area of the rectangle $\mathrm{II}=$ length x breadth
$=3 \mathrm{~cm} \times 2 \mathrm{~cm}=6 \mathrm{sq} \mathrm{cm}$.
Area of the rectangle $\mathrm{III}=$ length x breadth
$=4 \mathrm{~cm} \times 1 \mathrm{~cm}=4 \mathrm{sq} \mathrm{cm}$
Area of the rectangle IV = length $x$ breadth
$=3 \mathrm{~cm} \times 2 \mathrm{~cm}=6 \mathrm{sq} \mathrm{cm}$
$\therefore$ Total area of the whole figure
$=12 \mathrm{sqcm}+6 \mathrm{sq} \mathrm{cm}+4 \mathrm{sqcm}+6 \mathrm{sq} \mathrm{cm}$
$=28 \mathrm{sq} \mathrm{cm}$.
(b) Splitting the given figure into the rectangles I, II and III, we get


Area of the rectangle I
$=12 \mathrm{~cm} \times 2 \mathrm{~cm}=24 \mathrm{sq} \mathrm{cm}$
Area of the rectangle II
$=8 \mathrm{~cm} \times 2 \mathrm{~cm}=16 \mathrm{sq} \mathrm{cm}$
Area of rectangle III
$=3 \mathrm{~cm} \times 1 \mathrm{~cm}=3 \mathrm{sqcm}$
$\therefore$ Total area of the given figure $=3 \mathrm{sqcm}+3 \mathrm{sq} \mathrm{cm}+3 \mathrm{sq} \mathrm{cm}=9 \mathrm{sq} \mathrm{cm}$.
Ex 10.3 Class 6 Maths Question 11.
Split the following shapes into rectangles and find their areas (The measures are given in centimetres).


## Solution:

(a) Splitting the given figure into the rectangles I and II, we get

Area of the rectangle I
$=12 \mathrm{~cm} \times 2 \mathrm{~cm}=24 \mathrm{sq} \mathrm{cm}$
Area of the rectangle II
$=8 \mathrm{~cm} \mathrm{x} 2 \mathrm{~cm}=16 \mathrm{sq} \mathrm{cm}$

$\therefore$ Total area of the whole figure $=24 \mathrm{sq} \mathrm{cm}+16 \mathrm{sq} \mathrm{cm}=40 \mathrm{sq} \mathrm{cm}$.
(b) Splitting the given figure into the rectangles I, II and III, we get


Area of the rectangle I
$=7 \mathrm{~cm} \mathrm{x} 7 \mathrm{~cm}=49 \mathrm{sq} \mathrm{cm}$
Area of the rectangle II
$=21 \mathrm{~cm} \mathrm{x} 7 \mathrm{~cm}=147 \mathrm{sq} \mathrm{cm}$
Area of the rectangle III
$=7 \mathrm{~cm} \mathrm{x} 7 \mathrm{~cm}=49 \mathrm{sq} \mathrm{cm}$
$\therefore$ Total area of the whole figure
$=49 \mathrm{sq} \mathrm{cm}+147 \mathrm{sq} \mathrm{cm}+49 \mathrm{sq} \mathrm{cm}$
$=245 \mathrm{sq} \mathrm{cm}$.
Ex 10.3 Class 6 Maths Question 12.
How many tiles whose length and breadth are 12 cm and 5 cm respectively will be needed to fit in a rectangular region whose length and breadth are respectively:
(a) 100 cm and 144 cm
(b) 70 cm and 36 cm

Solution:
Length of one tile $=12 \mathrm{~cm}$
Breadth of the tile $=5 \mathrm{~cm}$
$\therefore$ Area of 1 tile $=$ length x breadth $=12 \mathrm{~cm} \mathrm{x} 5 \mathrm{~cm}=60 \mathrm{sq} \mathrm{cm}$
(a) Length of the rectangular region $=144 \mathrm{~cm}$

Breadth of the region $=100 \mathrm{~cm}$
$\therefore$ Area of the rectangular region $=$ length x breadth $=144 \mathrm{~cm} \times 100 \mathrm{~cm}$
$=14400 \mathrm{sq} \mathrm{cm}$
$\therefore$ Number of tiles needed to cover the whole rectangular region
$=14400 \mathrm{sq} \mathrm{cm} \div 60 \mathrm{sq} \mathrm{cm}$
$=240$ tiles
(b) Length of the rectangular region $=70 \mathrm{~cm}$

Breadth of the region $=36 \mathrm{~cm}$
$\therefore$ Area of the rectangular region $=$ length $\times$ breadth $=70 \mathrm{~cm} \times 36 \mathrm{~cm}=2520 \mathrm{sq} \mathrm{cm}$
$\therefore$ Number of tiles needed to cover the whole rectangular region
$=2520 \mathrm{sq} \mathrm{cm} \div 60 \mathrm{sq} \mathrm{cm}$
$=42$ tiles.

## Question 1:

Find the areas of the rectangles whose sides are:
(a) 3 cm and 4 cm (b) 12 m and 21 m
(c) 2 km and 3 km (d) 2 m and 70 cm

Answer:
It is known that,
Area of rectangle $=$ Length $\times$ Breadth
(a) $I=3 \mathrm{~cm}$
$b=4 \mathrm{~cm}$
Area $=l \times b=3 \times 4=12 \mathrm{~cm}^{2}$
(b) $I=12 \mathrm{~m}$
$b=21 \mathrm{~m}$
Area $=1 \times b=12 \times 21=252 \mathrm{~m}^{2}$
(c) $I=2 \mathrm{~km}$
$b=3 \mathrm{~km}$
Area $=1 \times b=2 \times 3=6 \mathrm{~km}^{2}$
(d) $I=2 \mathrm{~m}$
$b=70 \mathrm{~cm}=0.70 \mathrm{~m}$
Area $=I \times b=2 \times 0.70=1.40 \mathrm{~m}^{2}$

## Question 2:

Find the areas of the squares whose sides are:
(a) 10 cm (b) 14 cm (c) 5 m

Answer:
It is known that,
Area of square $=(\text { side })^{2}$
(a) Side $=10 \mathrm{~cm}$

Area $=(10)^{2}=100 \mathrm{~cm}^{2}$
(b) Side $=14 \mathrm{~cm}$

Area $=(14)^{2}=196 \mathrm{~cm}^{2}$
(c) Side $=5 \mathrm{~m}$

Area $=(5)^{2}=25 \mathrm{~m}^{2}$

## Question 3:

The length and breadth of three rectangles are as given below:
(a) 9 m and 6 m (b) 17 m and 3 m (c) 4 m and 14 m

Which one has the largest area and which one has the smallest?
Answer:
It is known that,
Area of rectangle $=$ Length $\times$ Breadth
(a) $I=9 \mathrm{~m}$
$b=6 \mathrm{~m}$
Area $=l \times b=9 \times 6=54 \mathrm{~m}^{2}$
(b) $I=17 \mathrm{~m}$
b $=3 \mathrm{~m}$
Area $=l \times b=17 \times 3=51 \mathrm{~m}^{2}$
(c) $I=4 \mathrm{~m}$
$b=14 \mathrm{~m}$
Area $=l \times b=4 \times 14=56 \mathrm{~m}^{2}$
It can be seen that rectangle (c) has the largest area and rectangle (b) has the smallest area.

## Question 3:

It can be seen that rectangle (c) has the largest area and rectangle (b) has the smallest area.

## Question 5:

What is the cost of tiling a rectangular plot of land 500 m long and 200 m wide at the rate of Rs 8 per hundred sq $m$ ?
Answer:
Area of rectangular plot $=500 \times 200=100000 \mathrm{~m}^{2}$
Cost of tilling per $100 \mathrm{~m}^{2}=$ Rs 8
Cost of tiling per $100000 \mathrm{~m}^{2}=\frac{8}{100} \times 100000=$ Rs 8000

## Question 6:

A table-top measures 2 m by 1 m 50 cm . What is its area in square metres?
Answer:
Length $(l)=2 \mathrm{~m}$
Breadth $(b)=1 \mathrm{~m} 50 \mathrm{~cm}=\left(1+\frac{50}{100}\right) \mathrm{m}=1.5 \mathrm{~m}$
Area $=l \times b=2 \times 1.5=3 \mathrm{~m}^{2}$

## Question 7:

A room is 4 m long and 3 m 50 cm wide. How many square metres of carpet is needed to cover the floor of the room?
Answer:
Length $(l)=4 \mathrm{~m}$
Breadth $(b)=3 \mathrm{~m} 50 \mathrm{~cm}=3.5 \mathrm{~m}$
Area $=l \times b=4 \times 3.5=14 \mathrm{~m}^{2}$

## Question 8:

A floor is 5 m long and 4 m wide. A square carpet of sides 3 m is laid on the floor. Find the area of the floor that is not carpeted.
Answer:
Length $(f)=5 \mathrm{~m}$
Breadth $(b)=4 \mathrm{~m}$
Area of floor $=1 \times b=5 \times 4=20 \mathrm{~m}^{2}$
Area covered by the carpet $=(\text { side })^{2}=(3)^{2}=9 \mathrm{~m}^{2}$
It can be seen that rectangle (c) has the largest area and rectangle (b) has the smallest area.

## Question 5:

What is the cost of tiling a rectangular plot of land 500 m long and 200 m wide at the rate of Rs 8 per hundred $s q$ m?
Answer:
Area of rectangular plot $=500 \times 200=100000 \mathrm{~m}^{2}$
Cost of tiling per $100 \mathrm{~m}^{2}=$ Rs 8
Cost of tiling per $100000 \mathrm{~m}^{2}=\frac{8}{100} \times 100000=$ Rs 8000

## Question 6:

A table-top measures 2 m by 1 m 50 cm . What is its area in square metres?
Answer:
Length ( $l$ ) $=2 \mathrm{~m}$
Breadth $(b)=1 \mathrm{~m} 50 \mathrm{~cm}=\left(1+\frac{50}{100}\right) \mathrm{m}=1.5 \mathrm{~m}$
Area $=l \times b=2 \times 1.5=3 \mathrm{~m}^{2}$

## Question 7:

A room is 4 m long and 3 m 50 cm wide. How many square metres of carpet is needed to cover the floor of the room?
Answer:
Length ( $l$ ) $=4 \mathrm{~m}$
Breadth $(b)=3 \mathrm{~m} 50 \mathrm{~cm}=3.5 \mathrm{~m}$
Area $=l \times b=4 \times 3.5=14 \mathrm{~m}^{2}$

## Question 8:

A floor is 5 m long and 4 m wide. A square carpet of sides 3 m is laid on the floor. Find the area of the floor that is not carpeted.
Answer:
Length $(l)=5 \mathrm{~m}$
Breadth $(b)=4 \mathrm{~m}$
Area of floor $=1 \times b=5 \times 4=20 \mathrm{~m}^{2}$
Area covered by the carpet $=(\text { Side })^{2}=(3)^{2}=9 \mathrm{~m}^{2}$
Area not covered by the carpet $=20-9=11 \mathrm{~m}^{2}$
Question 9:
Five square flower beds each of sides 1 m are dug on a piece of land 5 m long and 4 m wide. What is the area of the remaining part of the land?
Answer:
Area of the land $=5 \times 4=20 \mathrm{~m}^{2}$
Area occupled by 5 flower beds $=5 \times(\text { Side })^{2}=5 \times(1)^{2}=5 \mathrm{~m}^{2}$
$\therefore$ Area of the remaining part $=20-5=15 \mathrm{~m}^{2}$

## Question 10:

By splitting the following figures into rectangles, find their areas (The measures are given in centimetres).

(a) (b)

Answer:
(a) The given figure can be broken into rectangles as follows.


Area of $1^{\text {st }}$ rectangle $=4 \times 2=8 \mathrm{~cm}^{2}$
Area of $2^{\text {nd }}$ rectangle $=6 \times 1=6 \mathrm{~cm}^{2}$
Area of $3^{\text {rd }}$ rectangle $=3 \times 2=6 \mathrm{~cm}^{2}$
Area of $4^{\text {th }}$ rectangle $=4 \times 2=8 \mathrm{~cm}^{2}$
Total area of the complete figure $=8+6+6+8=28 \mathrm{~cm}^{2}$
(b) The given figure can be broken into rectangles as follows.


Area of $1^{\text {at }}$ rectangle $=3 \times 1=3 \mathrm{~cm}^{2}$
Area of $2^{\text {nd }}$ rectangle $=3 \times 1=3 \mathrm{~cm}^{2}$
Area of $3^{\text {rd }}$ rectangle $=3 \times 1=3 \mathrm{~cm}^{2}$
Total area of the complete figure $=3+3+3=9 \mathrm{~cm}^{2}$

## Question 11:

Split the following shapes into rectangles and find their areas. (The measures are given in centimetres)

(a)

(b)

(c)

Answer:
(a) The given figure can be broken into rectangles as follows.


Area of $1^{\text {st }}$ rectangle $=12 \times 2=24 \mathrm{~cm}^{2}$
Area of $2^{\text {nd }}$ rectangle $=8 \times 2=16 \mathrm{~cm}^{2}$
Total area of the complete figure $=24+16=40 \mathrm{~cm}^{2}$
(b) The given figure can be broken into rectangles as follows.


Area of $1^{\text {st }}$ rectangle $=21 \times 7=147 \mathrm{~cm}^{2}$
Area of $2^{\text {nd }}$ square $=7 \times 7=49 \mathrm{~cm}^{2}$
Area of $3^{\text {rd }}$ square $=7 \times 7=49 \mathrm{~cm}^{2}$
Total area of the complete figure $=147+49+49=245 \mathrm{~cm}^{2}$
(c) The given figure can be broken into rectangles as follows.


Area of $1^{\text {nt }}$ rectangle $=5 \times 1=5 \mathrm{~cm}^{2}$
Area of $2^{\text {nd }}$ rectangle $=4 \times 1=4 \mathrm{~cm}^{2}$
Total area of the complete figure $=5+4=9 \mathrm{~cm}^{2}$

## Question 12:

How many tiles whose length and breadth are 12 cm and 5 cm respectively will be needed to fit in a rectangular region whose length and breadth are respectively:
(a) 100 cm and 144 cm
(b) 70 cm and 36 cm

Answer:
(a) Total area of the region $=100 \times 144=14400 \mathrm{~cm}^{2}$

Area of one tile $=12 \times 5=60 \mathrm{~cm}^{2}$
Number of tiles required $=\frac{14400}{60}=240$
Therefore, 240 tiles are required.
(b) Total area of the region $=70 \times 36=2520 \mathrm{~cm}^{2}$

Area of one tile $=60 \mathrm{~cm}^{2}$
Number of tiles required $=\frac{2520}{60}=42$
Therefore, 42 tiles are required.

